Una supercomputadora revela qué sucede con la materia y la luz dentro de un agujero negro

Una supercomputadora revela qué sucede con la materia y la luz dentro de un agujero negro
Una supercomputadora revela qué sucede con la materia y la luz dentro de un agujero negro

14:22

“La gente pregunta a menudo sobre esto, y simular estos procesos difíciles de imaginar me ayuda a conectar las matemáticas de la relatividad con consecuencias reales en el universo real”, dijo en un comunicado. Jeremy Schnittmanastrofísico Centro de vuelos espaciales Goddard de la NASA, quien creó las visualizaciones. “Así que simulé dos escenarios diferentes, uno en el que una cámara, un sustituto de un atrevido astronauta, simplemente no alcanza el horizonte de sucesos y es expulsada, y otro en el que cruza el límite, sellando su destino”.

Sigue leyendo: Los científicos registraron la corona solar “esponjosa”, la capa más externa del Sol

Las visualizaciones están disponibles en múltiples formas. Los vídeos explicativos actúan como guías turísticas, iluminando los extraños efectos de la teoría general de la relatividad de Albert Einstein. Las versiones representadas como vídeos de 360 ​​grados permiten a los espectadores mirar a su alrededor durante el viaje, mientras que otras se reproducen como mapas planos de todo el cielo.

Para crear las visualizaciones, Schnittman se asoció con el científico Goddard. Brian Powell y usé el Descubre la supercomputadora en el Centro de Simulación Climática de la NASA. El proyecto generado alrededor 10 terabytes de datos (equivalente a aproximadamente la mitad del contenido de texto estimado en la Biblioteca del Congreso) y Tardó unos cinco días en ejecutarse en sólo el 0,3% de los 129.000 procesadores de Discover. La misma hazaña llevaría más de una década en una computadora portátil típica.

El destino es un agujero negro supermasivo con 4,3 millones de veces la masa de nuestro sol. equivalente al monstruo ubicado en el centro de nuestra galaxia, la Vía Láctea.

“Si tienes la opción, querrás caer en un agujero negro supermasivo”, explicó Schnittman. “Los agujeros negros de masa estelar, que contienen hasta unas 30 masas solares, tienen horizontes de sucesos mucho más pequeños y fuerzas de marea más fuertes, que pueden desgarrar los objetos que se acercan antes de que alcancen el horizonte”.

Esto ocurre porque la atracción gravitacional en el extremo de un objeto más cercano al agujero negro es mucho más fuerte que la del otro extremo. Los objetos que caen se estiran como fideos, un proceso que los astrofísicos llaman espaguetificación.

El horizonte de sucesos del agujero negro simulado abarca unos 25 millones de kilómetros, o alrededor del 17% de la distancia entre la Tierra y el Sol. Una nube plana y arremolinada de gas caliente y brillante llamada disco de acreción lo rodea y sirve como referencia. visual durante el otoño. Lo mismo ocurre con las estructuras brillantes llamadas anillos de fotones, que se forman más cerca del agujero negro a partir de la luz que lo ha orbitado una o más veces. Un telón de fondo del cielo estrellado visto desde la Tierra completa la escena.

Quizás te interese: Los lanzamientos de cohetes podrían acelerar el cambio climático

A medida que la cámara se acerca al agujero negro, alcanzando velocidades cada vez más cercanas a las de la propia luz, el brillo del disco de acreción y de las estrellas del fondo se amplifica de forma muy parecida a como aumenta el tono de un sonido. acercándose al coche de carreras. Su luz parece más brillante y blanca cuando se mira en la dirección de la marcha.

Las películas comienzan con la cámara situada a 640 millones de kilómetros de distancia y el agujero negro rápidamente llena la vista. En el camino, el disco del agujero negro, los anillos de fotones y el cielo nocturno se distorsionan cada vez más, incluso formando múltiples imágenes a medida que su luz pasa a través del espacio-tiempo cada vez más deformado.

En tiempo real, la cámara tarda unas 3 horas en caer hasta el horizonte de sucesos, ejecutando casi dos órbitas completas de 30 minutos a lo largo del camino. Pero cualquiera que mirara desde lejos nunca llegaría allí. A medida que el espacio-tiempo se distorsiona cada vez más cerca del horizonte, la imagen de la cámara se ralentizaría y luego parecería congelarse justo debajo de ella. Esta es la razón por la que los astrónomos originalmente se referían a los agujeros negros como “estrellas congeladas”.

En el horizonte de sucesos, incluso el propio espacio-tiempo fluye hacia adentro a la velocidad de la luz, el límite de velocidad cósmica. Una vez dentro, tanto la cámara como el espacio-tiempo en el que se mueve se precipitan hacia el centro del agujero negro, un punto unidimensional llamado singularidad, donde las leyes de la física tal como las conocemos dejan de operar.

 
For Latest Updates Follow us on Google News
 

PREV Tecnología que cuida tus ojos – .
NEXT 5 juegos tipo Stardew Valley para móviles Android